Удивительная униполярная машина
Добавить рекламное объявление

Власов В.Н.


Удивительная униполярная машина.


Униполярным двигателям и генераторам, как в прошлом, так и в настоящем, уделяется большое внимание. Хотя используются такие моторы и генераторы в специфических условиях. Например, когда надо получить постоянный электрический ток большой величины, но при малом напряжении. Или получить мотор, работающий от мощных аккумуляторов с небольшим напряжением, таких как магнето на автомобилях, тракторах и т.п.

Униполярный электродвигатель - разновидность электрических машин постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1-й токосъёмник на оси диска и 2-ой токосъёмник у края диска.

Рис. 1. Простой униполярный двигатель.



Вот наглядная демонстрация работы униполярного электродвигателя (рис.1). На головке шурупа находится постоянный магнит, сила которого удерживает шуруп притянутым к полюсу батарейки. При соединении свободного полюса батарейки с краем магнита магнит вместе шурупом начинает довольно резво вращаться.

Первый униполярный двигатель, колесо Барлоу, создал Питер Барлоу, описав его в книге «Исследование магнитных притяжений», опубликованной в 1824 году. Колесо Барлоу представляло собой два медных зубчатых колеса, находящихся на одной оси. В результате взаимодействия тока, проходящего через колёса с магнитным полем постоянных магнитов колёса вращаются. Барлоу выяснил, что при перемене контактов или положения магнитных полюсов происходит смена направления вращения колёс на противоположное.

Униполярный генератор — разновидность электрической машины постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1-й токосъёмник на оси диска и 2-й токосъёмник у края диска.

Рис.2. Диск Фарадея, первый униполярный генератор

С позиций официальной электродинамики принцип действия униполярного генератора простой. Есть смысл его привести. На электроны, находящиеся в диске, действует Сила Лоренца, являющаяся векторным произведением напряжённости магнитного поля и скорости перемещения электрона вместе с проводником в результате вращения диска. Сила эта направлена вдоль радиуса диска. В результате при вращении диска возникает ЭДС между его центром и краем.

В отличие от других электрических машин, такой генератор имеет чрезвычайно низкую ЭДС (от долей до единиц вольт) при низком внутреннем сопротивлении и большом токе; равномерность получаемого тока, отсутствие необходимости коммутировать его коллектором ротора, или выпрямлять полученный другими машинами переменный ток внешними коммутирующими или электронным приборами; большие собственные потери энергии из-за протекающих по диску обратных токов, его бесполезно нагревающих. Эта проблема частично решается в конструкциях двигателей и генераторов с жидким проводящим токосъёмником по всему периметру диска; Сочетание этих свойств обусловило очень узкие сферы применения этого типа генераторов.

Чтобы принцип работы униполярного мотора и генератора был более понятным, воспользуемся рис.3. Данный рисунок составлен из двух рисунков, взятых с одного форума в Интернете.

Рис.3. Объяснение работы униполярного мотора и генератора.

Рис.4. Еще одна схема для ознакомления с принципами работы униполярного двигателя и генератора.

В данных схемах предполагается, что магнит одновременно является как носителем магнитного поля, так и проводником электрического тока. Хотя с таким же успехом функции магнита можно разделить между диском из материала с высокой проводимостью и отдельным магнитом для создания магнитного поля. В этом случае необязательно, чтобы магнитное поле покрывало весь диск, достаточно, чтобы магнитное поле присутствовало пространственно только над тем сектором диска, где будет протекать электрический ток в случае, если мы имеем мотор, или над тем сектором, с которого мы будет этот ток получать в случае, если будем использовать конструкцию в качестве генератора. Это позволяет упрощать конструкцию, обеспечивая над нужными участками вращающего диска магнитное поле нужной напряженности, использую магниты (электромагниты) меньших габаритов при той же напряженности создаваемого магнитного поля.

Но вернёмся к униполярному динамо или мотору. Как для униполярного мотора, так и для униполярного генератора важно, чтобы вращался электропроводный диск, который должен обладать небольшим внутренним сопротивлением (золото, серебро, медь). Магнит может не вращаться или он может вращаться как вместе с диском, так и сам по себе, но исключительно параллельно вращающемуся диску. Данное открытие было сделано А. Родиным. Им обнаружено, что реакция на цилиндрическом магните-статоре при вращающемся диске-роторе в униполярном двигателе полностью отсутствует (рис.5). С другой стороны вращение постоянного магнита никак не влияло на вращение диска. Важен лишь факт наличия магнитного поля, его напряженность и направление силовых линий.

Рис. 5. Схема опыта А.Родина.

Внимательно посмотрим на рис.5. А теперь мысленно разделим диск над магнитом на множество мелких секторов. При вращении такого разрезанного на сектора диска каждый сектор превращается в самый обыкновенный проводник, который движется перпендикулярно силовым линиям магнитного поля. Но из курса физики средней школы мы прекрасно знаем, что в таком проводнике на его концах появляется разность потенциалов, а если по такому проводнику пропускать ток, то он будет двигаться в магнитном поле в плоскости, перпендикулярной направлению силовых линий магнитного поля. Т.е., поведение диска, как совокупности секторов круга, соединенных с центре вокруг оси и ободом на периферии, прекрасно объясняется хорошо известными нам со школьной скамьи законами. Получается, что вместо одного контакта на периферии диска можно использовать несколько контактов, равномерно разместив их по краю диска и соединив их параллельно. Или использовать один кольцевой контакт, обеспечив при этом малое трение между ним и краем диска (ртуть, графит, специальные смазки на основе графита и т.п.).

Никола Тесла в качестве одного из вариантов повышения выходы электроэнергии из униполярного генератора также предложил разбивать диск на секторы, но только не прямые, а в виде своеобразной спирали (рис.6). Тесла, похоже, предложил такую конструкцию для того, чтобы при вращении диска токи, протекающие по секторам, создавали своеобразную плоскую катушку, а значит и магнитное поле. Причем в зависимости от направления спиральных секторов эти токи могли создавать магнитные поля, которые усиливали, либо ослабляли магнитное поле основного магнита.

Рис.6.

Но этот способ имеет недостаток в том, что совокупный ток разбивается на потоки по секторам, в самих секторах растет сопротивление, что ведет к снижению мощности генератора. Вместо того чтобы подразделять диск или цилиндр по спирали, как обозначено в Рис.6, более удобно вставить один или более витков между диском и контактным кольцом на периферии, как показано на Рис.7.

Рис.7.

Поступить можно немного по-иному. Щётку B' можно оставить к контакте с диском, а к ней уже присоединить проводник, образующий вокруг диска один или несколько витков вокруг диска. Тогда ток, прежде чем попасть в нагрузку, успевает в силу своего большого значения создать внутри витков (селеноида) мощное магнитное поле, которое, если правильно подобрать направление витков, будет суммироваться с магнитным полем магнита и приводить к увеличению тока, снимаемого с вращающегося диска. Если выбрать другое направление для витков, то можно создать генератор, у которого сила тока на выходе будет при увеличении частоты вращения уменьшаться. Такой генератор, не исключаю, мог бы найти применение в электротехнике, как элемент, свойства которого будут аналогичны такому элементу, как отрицательное сопротивления. Можно в качестве элемента отрицательной связи направлять в такую спираль (катушку) только часть тока, снимаемого с диска. Это позволит ограничить максимальный ток, снимаемый в нагрузку с такого генератора, что позволит предотвратить возможную аварию.

Многие изобретатели пытаются создать тандем из униполярного генератора и униполярного мотора, чтобы частью мощности униполярного генератора питать униполярный мотор, который в свою очередь будет вращать диск униполярного генератора. Теоретически это сделать можно. Но надо не мудрить, а посадить на общую ось и униполярный генератор, и униполярный мотор. Так как для вращения всей конструкции потребуется преодолевать только силу трения, то униполярный мотор должен иметь должную для этого мощность, для чего потребуется подобрать магнит(ы), между которыми будет вращаться диск униполярного мотора. А вот для диска (дисков) униполярного генератора магниты надо брать более мощные и дополнять их витками проводника для усиления магнитного поля, в котором будут вращаться диски униполярного генератора.

Николу Тесла сделанные усовершенствования полностью не удовлетворили, поэтому он предложил еще один вариант униполярного динамо, в котором постарался в максимальной степени избавиться от недостатков, связанных с контактами (щетками). Дело в том, что любая щетка мешает диску вращаться, так как между щеткой и диском неизбежно трение и искрообразование, которые вместе снижают эффективность и надежность униполярной машины. На рис.8 показано, как Тесла решил эту задачу.

Рис.8.

На этом рисунке два униполярных генератора объединены в одно целое устройство. Диски H и K генераторов вращаются в одну сторону, будучи связанные гибким металлическим (электропроводным) поясом L. А вот направление магнитных полей магнитов, между которыми вращаются диски генераторов, противоположное. Поэтому в одном из них токи текут от центра в периферии, а у другого от периферии к центру. Электропроводный пояс L позволяет току с одного диска свободно перейти на другой диск. Остается теперь только снимать ток с валов генераторов, для чего служат контакты F и P, а также зажимы N. Такие контакты (токосъёмы) уже более надежны и проще в изготовлении и эксплуатации, так как линейная скорость вращения вала заметно меньше, чем на краю диска. Естественно данный генератор можно использовать в качестве униполярного двигателя. Никола Тесла предусмотрел шкивы управления M, чтобы можно было вращать один из валов G.

Одним из недостатков униполярного двигателя является получаемое небольшое напряжение – максимум чуть больше 1 вольта. Для удвоения напряжения можно применить такую схему (рис.9).

Рис.9. Униполярка с удвоением напряжения.

В качестве магнитов можно использовать два подковообразных магнита, тогда в области дуг этих магнитов придется просверлить отверстия для вала диска. Данный вариант, наверное, будет самым лучшим, так как позволит замкнуть силовые линии магнитов в максимальной степени, что позволит продлить срок эксплуатации магнитов, так как не исключено, что со временем магниты могут размагничиваться. Но можно взять два магнита «Сибирский Коля». Один разместить сверху диска, а второй снизу так, чтобы магниты «смотрели» друг на друга участками с различными полюсами. Можно из магнита «Сибирский Коля» сделать что-то похожее на подковообразный магнит, если полюса, не обращенные к диску замкнуть между собой «скобой» из магнитомягкого железа.

Разместив щетки на противоположных концах диаметров диска, как это показано на рис.9 мы сможем получать постоянный ток, напряжение которого будет примерно в 2 раза больше, чем, если бы ток снимался с оси и одной из щеток. Действительно, на одной половине диска (справа) направление магнитного поля будет сверху вниз, а слева магнитное поле будет направлено снизу вверх. Значит, при выборе направления вращения ток в одной из половин диска будет течь от щетки к оси, а на другой половине диска – от оси к другой щетке. Конечно, при этом увеличится вдвое сопротивление, а значит, ток не изменится по сравнению с классическим униполярным двигателем, но это уже инженерам решать, когда им важнее ток, а когда напряжение.

Также как и в случае с классическим униполярным генератором можно сделать «шашлык» из магнитов и дисков. И собрать конструкцию, в котором можно диски соединить либо последовательно, либо параллельно. В первом случае можно получить на выходе напряжение, повышенное во столько раз, сколько дисков будет включено в цепочку. А во втором случае мы получим увеличение тока согласно числу подключенных дисков.

04.09.2011

Безтопливная энергетика

На главную

Добавить рекламное объявление
Яндекс.Метрика
Hosted by uCoz